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Abstract

A three-node triangular finite element based on cubic zig-zag plate theory is developed to refine the predictions of the
mechanical, thermal, and electric behaviors fully coupled. Both the displacement and temperature fields through the
thickness are constructed by superimposing linear zig-zag field to the smooth globally cubic varying field. Smooth
parabolic distribution through the thickness is assumed in the transverse deflection in order to consider transverse
normal deformation. Linear zig-zag form is adopted in the electric field. The layer-dependent degrees of freedom of
displacement and temperature fields are expressed in terms of reference primary degrees of freedom by applying
interface continuity conditions as well as bounding surface conditions of transverse shear stresses and transverse heat
flux. This non-conforming element passes the bending patch tests in arbitrary mesh configurations. Non-conforming C1
shape functions for the variables of out-of-plane displacement field are introduced. Nodal variables are displacements,
temperature, and elastic potentials. Through the numerical examples of coupled and uncoupled analysis, the accuracy
and efficiency of the present finite element are demonstrated. For the improvement of accuracy of interlaminar stresses,
post-processing approach of integration of equilibrium equation is used. For the computation of higher order deriv-
atives in the 3-D stress equilibrium equations, differential quadrature method is employed. The present finite element is
suitable in the predictions of fully coupled behaviors of thick smart composite plate under mechanical, thermal, and
electric loadings.
© 2003 Elsevier Ltd. All rights reserved.

Keywords: Finite element; Zig-zag plate theory; Transverse stresses; Non-conforming C1 shape function; Differential quadrature;
Coupled behavior; Thermo-electric-mechanical behavior

1. Introduction

In recent years, development of integration of piezo-electric materials to composite structures is paid
special attentions due to their smart structural functionality as sensors and actuators. Thus it is important
to model and predict the behaviors of smart composite structures in the critical situations. Especially the
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full coupling effects need to be investigated in the study of smart structures in high temperature environ-
ment. Among the possible approaches, 3-dimensional and quasi-3-dimensional models are not compu-
tationally tractable. Thus many researchers are pursuing more efficient methods to accurately analyze
many-layered smart structures.

In the early stage of the development of models, classical/first order shear deformation theory has been
employed to predict mechanical behavior of embedded or surface bonded piezo-electric layers (Crawley,
1987; Lee, 1990). The finite elements based on the smart classical/first order plate theories have been
developed for the application to general shape and loading conditions (Ha et al., 1992).

However, for the accurate prediction of static and dynamic behavior for general layup configurations of
smart laminated structures, classical and first order shear theories are not adequate. Thus higher order
theories with smeared displacements and layerwise electric potential fields (Mitchell and Reddy, 1995;
Franco Correia et al., 2000) and full layerwise theories and corresponding finite element have been
developed by Saravanos et al. (1997). The smeared theory is not sufficient to describe the deformation
behavior through the thickness because it cannot satisfy static continuity conditions at the interfaces be-
tween layers. Layerwise theory can adequately describe the deformation behavior through the thickness but
it is not computationally efficient because it employs a large number of degrees of freedom which depend
upon the number of layers (Reddy and Robbins, 1994).

In thermo-mechanical problem, even in moderate thick plate configurations, the transverse normal
deformation effect cannot be neglected since the effect of out-of-plane thermal deformation is equally
important compared to those of the in-plane thermal deformations (Ali et al., 1999). In addition, for the
reliable analysis of adaptive composite laminates under thermal environments, full coupling effects between
thermal-mechanical-electricity should be considered. Chattopadhyay et al. (1999) used a finite element
model based on the smeared cubic higher order theory to analyze the smart structures with the full coupling
of thermo-mechanical-electricity. However, smeared theories are not adequate in the prediction of defor-
mation behavior and layerwise models and 3-D solid models are computationally too expensive. Thus it is
still required to develop accurate and efficient model and corresponding finite element that can predict the
static and dynamic behaviors of smart structures under thermo-electric-mechanical coupled situations.

In the present study, we aim at developing a plate bending element which is based on higher order zig-
zag theory (Cho and Oh, 2001, submitted for publication) for the prediction of fully coupled behavior of
smart composite plates under the thermo-electric-mechanical environments. To predict reliable deforma-
tion behaviors, transverse normal as well as transverse shear deformations are considered. For the efficient
evaluation of the mechanical behaviors, transverse shear stress balance conditions are pre-imposed in the
displacement field to reduce total active degrees of freedom. The temperature field is also obtained by
superimposing linear zig-zag field into the global smeared cubic field. The layer-dependent temperature
degrees of freedom are suppressed by imposing top and bottom surface heat flux conditions as well as
interface transverse heat flux continuity conditions. The formulation includes full coupling between
thermo-mechanical-electric behaviors. Even though the developed theory is a two-dimensional plate ver-
sion, full three-dimensional constitutive equations are used for the accurate prediction of the deformation
under thermal and electric loads combined.

The developed finite element does not have layer-dependent degrees of freedom of displacement field and
temperature field but it has layer-dependent degrees of freedom for electric potentials in order to describe
arbitrary distributions of electric potential through the thickness of smart structures.

2. Zig-zag model review

The free energy density function may be written as follows and can be found in Chattopadhyay et al.
(1999):
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F(gij, Ei, 9) = 5 Ci/klgijgkl — el:]‘kEiS/‘k — EbijEiEj — k,'j@ﬁ,:/' — d,‘E,'O — EQTHZ (1)
where the quantities Cy,, e, and Cg are the elastic constants, the piezoelectric constants, and the heat
capacity respectively, and ar is defined as Cg/Tj.
The constitutive equations for fully coupled thermo-mechanical-electric materials are given as

oF
0y = 7= Cuwren — el — kil 2)
i
oF
D;=— 3E. - Cikbik + byE; 4 d;0 (3)
oF
S = — @ = kijgij + diE,‘ + aTH (4)

where ¢;; and D; are the components of the stress tensor and electric displacement vector. S denotes en-
tropy. 0 = T — T, is the temperature rise from the initial temperature 7;. E; is the components of the electric
field vector. b;; is the dielectric permittivity and k;; and d; refer to the thermal-mechanical and the thermal-
piezoelectric coupling constants.

In the case of considering partial coupling, the constitutive equation given in Eq. (2) is used only for the
analysis. Based on linear piezoelectricity, E; can be expressed from a scalar potential function ¢ as follows:

E=—¢, (i=1,2,3) (5)

Infinitesimal displacement and strain relationship is used and it is given as

1

& =5

(u + w;) (6)
The configuration of the smart laminated composite plate is shown in Fig. 1.

For efficient modeling without losing the accuracy in the present study, a fully coupled higher-order zig-
zag theory is proposed. A zig-zag higher order in-plane displacement field is obtained by superimposing zig-
zag linear field to the globally cubic varying field. In order to include the transverse normal effect which is
significant in thermo-mechanical problems, the out-of-plane displacement field is assumed as globally
parabolic form through the thickness.

X/ Composite Laminates
1

)\ >
hy / X
- > °
a Piezoelectric
Z v Actuator

Fig. 1. Configuration of the adaptive laminated composite plates.
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The starting displacement field can be written as follows:

Uy (xXp,2) = Ul (xp) + ¥, (0p)z + &, (xp)2° + 0, (xp)2° + ZS;‘(X/;)(Z —zi)H(z — z) ™)

u3(xy,2) = w(xy) + 71 (x,)z + r2(x,)2

where H(z — z;) is a Heaviside unit step function.

By applying top and bottom surface transverse shear free conditions, and applying transverse shear
stress continuity conditions at the interface between layers, the final displacement field reduces to the
following form.

N-1
Uy (xp,2,8) = u(xp,t) — wy(xp, 1)z — {3(/)1}12 + Z (a @, + b 72 ) + r15(xp, OB + 124(xp, t)h2}22

k=1
N-1
+ QDa(xm t)Z3 + Z (aiy(/)y + b{jyrz‘y) (Z — Zk)H(Z — Zk)
k=1

U3 (X, 2, 1) = WXy, 1) + 11 (X0, )2 4 12 (55, £)2°
(8)

The detailed derivation can be found in Cho and Oh (2001, 2002).
The variables in the final displacement field are defined only at the reference plane. The primary variables
are u’, w, @,, r1, r>. Thus the number of the primary variables does not depend upon the number of layers.
Similar to the displacement field construction, the temperature field through the thickness of the plate is
obtained by superimposing linear zig-zag field onto the global cubic smooth field. The starting temperature
field can be written as follows:

N-I
0(xp,2,t) = Oo(xp,£) + 01 (xp,£)z + 02(xp, )2 + O3(xp,1)2° + Z 0% (xp, 1) (z — z)H (z — zi) 9)

In general, the plate may be subjected to either thermal loads or prescribed temperature at both top and
bottom surfaces. Four different set of bounding surface conditions may be considered and they were given
in Cho and Oh (submitted for publication). In the present study, we focus on the case of thermal heat flux
applied on the bounding surfaces. Thus the two thermal boundary conditions on both surfaces are ex-
pressed as

—Kkl0z=¢q, atz=0
{ k0, =q, atz=h (10)

By applying the heat flux conditions on top and bottom surfaces and applying transverse heat flux
continuity condition at each interface between layers, the expression for the temperature field can be written
as follows:

4] g 2 k0. o
0 =0, e Zh{% K32+39gh —&—ZC%—}—d)}ZZ—l—H;Z
N—-1
—I—Z C*03 + d")(z — z)H(z — z) (11)

k=1

where ¢, and ¢y, indicate the heat flux applied on top and bottom surfaces, respectively. «}, denotes the
thermal conductivity in the thickness direction in the ith layer. It must be noted that the higher order
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temperature field defines a non-uniform zig-zag temperature distribution through the thickness of plates.
The functions 6y(x;) and 60;(xg) define the in-plane temperature variations. The detailed expressions for the
coefficients of Eq. (11) can be found in Cho and Oh (2001, submitted for publication). It is important to
note that although a linear temperature field can address the in-plane temperature distribution, it cannot
satisfy the surface thermal boundary conditions nor the heat flux continuity conditions at the interfaces
between layers. Therefore, temperature variations through the thickness, which produce the most impor-
tant bending deformation, cannot be modeled accurately by the linear temperature field nor smooth cubic
field. The present temperature field given in Eq. (11) can describe accurate and simple distribution through
the thickness and the pattern is consistent with the displacement field given in Eq. (8). It should be
emphasized that if the adjacent layers have severe changes of thermal material properties like sandwich
plates or hybrid composite plates, the temperature field given in Eq. (11) can predict accurate but signifi-
cantly different results from those of smeared temperature fields.
The expressions for the potential function can be written as follows:

=3 { o + 91— 2) {HH G —2) — HE - 2)} (12)

The descriptions of the electric potential ¢ are expressed as layer-dependent form using linear zig-zag
field through the thickness. Two degrees of freedom are required to express electric potential ¢ in each
layer. Even though the layer-dependent potential field is assumed through the thickness, the number of
piezo-layers is relatively small compared to the total number of layers. Thus this layer-dependent electric
potential field does not increase the number of degrees of freedom significantly. Variational functional
based on Egs. (8), (11) and (12) can be constructed for general materials with fully coupled constitutive
relations given in Egs. (2)—(4). The equilibrium equations and boundary conditions can be derived from the
Hamilton principle. The fully coupled governing equations for the proposed deformation, temperature, and
electric field can be derived in a straightforward way and it was derived in Cho and Oh (submitted for
publication).

3. Formulation of a non-conforming finite element method

The laminated plate theory which we have developed has second derivatives of w (transverse deflection at
the reference plane) and », and 7, in the expression of strain energy. Thus C' (slope-continuous) functions
should be used. However, it is well known in plate theory that it is difficult to impose C' conditions at the
interfaces between elements (in x—y plane) in an arbitrary mesh configuration. In the present study, a tri-
angular plate bending element is developed for its simplicity and expediency in modeling arbitrary
boundary shapes. The thin plate non-conforming triangular element developed by Specht (1988) satisfies C!
condition at the nodes, but not along element boundaries. This element is the starting point for our
development.

In the finite element formulation, the coordinates x and y indicates x; and x,, respectively. For the
present three-noded triangular element, the nodal displacement vector {a}* is {u?, Uiy Pris Py Wis Oy Oy Pz,
Risi, Riyi, 21, Rowiy Royiy @, @1, 00,05} where 0, =w, and 0, =—w, and R, =r, and R, =—r, and
R =, and Ry, = —r»,. Area coordinates L;, L,, and L; are used as interpolation functions. The detailed
geometry and the coordinates for the triangular element is shown in Fig. 2.

The global coordinates are expressed as follows:

x:iL,-x,-, y:iL,-y,- (13)
=1 =1
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Node Number

Fig. 2. Geometry and coordinates for the triangular element.

Isoparametric mapping is used for displacement unknowns u, uy, 7, @7, ¢y, ¢y, 0o, and 05. Subpara-

metric mapping is used for w, r|, and r,. The primary displacement unknowns are expressed in terms of
nodal variables and shape functions as follows:

3 3
u) = ;Liu;’i, uy = ;Liu;’i (14)

3 3
@) = ZLi(P;iv @) = ZLi(P;i (15)
i=1 i=1

3
w= Z{WiNz + 0Ny + 04Ny, (16)

i=1

3
ry =

{riuNi + RiuNy + RNy}, r =

3
i=1 i=1

{ruN; + R2iNyi + RoiN, } (17)
3 3

by = ZLi‘f)ow ¢, = ZLid)li (18)
=1 =1

3 3
0o = ZLigou 0; = ZLi93i (19)
P p

where the detailed expressions for N;, Ny;, N,; are taken from Specht (1988). The terms of the basis of shape
functions in the area coordinate system are reproduced here, with corrections of errors made in Specht
(1988). It can also be found in Cho and Parmerter (1994).
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Ni =n3iz, Ny=mn3_1, N;=ny (20)

where i = 1, 2, and 3.
The shape functions can be written in the form

wherea=1,...,9
1
[Z,.] = |:L1,Lz,L3,L1L2,L2L3,L3L1,L%Lz + §L1L2L3{3(1 — ,u3)L1 — (1 + 3#3)L2 + (1 + 3/,(3)L';},
1
L3Ls + 5 LiLaLs{3(1 — )Ly — (1+3uy)Ls + (1 + 3p)Li},
1
L3L +§L1L2L3{3(1 — o)Ly — (1 +3p) Ly + (1 4+ 3p,) Lo} (22)

The constants are

B-14 n-5 L-h
H = l% ) W = l% ) K3 = l%

(23)

where /,, [, and /5 are the lengths of the side of the triangle.
The determination of z7, zg, and z¢ is based on the following consideration. From the boundary con-
ditions in equation, the energy associated with interelement jumps can be written

AU, — / A 2 ar+ / M 2 )ar (24)
I, on I, os

Physically, there should be no energy associated with these interelement discontinuities; so we set both
terms of Eq. (24) to zero (see Fig. 3). Since w(s) is uniquely determined from the two node data, Aw; is
equal to zero.

For a constant state of bending moments, the following condition should be required to pass the bending
patch test.

ow
M,m/rxA<a>dFO (25)

Thus the quartic polynomials z7, zg, and z¢ are determined to satisfy Eq. (25).
The transformation matrix Z,, is regular for an arbitrary geometry of the triangle. The shape function 7,
can now be set up by Eq. (21) using the inverse transformation matrix.

-1 0 1 2 0 -2
0 0 apn —dai3 0 —dj2
0 0 an —daj3 0 —dn

1 -1 0 -2 2 0
—diz  —an 0
ans 0 0 —ans —dar 0

0 1 -1 0 -2 2

0 an 0 0 —ap  —ap

0  an 0 0 —dz  —axy |

N
I
coocococooco~
coococo~oo0O
co—~ocoocoococoo
)
[
o
o
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AG, =0

n

At the Node Points 1, and 3 Normal Slopes are Continuous.

Normal Slope Discontinuity Occurs at the Interface 1-3

A2 )ar=o
'['A on

For Constant State of Bending Moment A

LA(ZZjdrzo

Fig. 3. Element interface slope discontinuity.

where [a;] = {214%} _ [)’2 -V V=N N
lj -

W] -x xi—xs v —x
the corner nodes.
In the calculation of the normal derivatives,

o _hfo 0o ,0 (O _ 09
o' 44\ 0L, oL, “or, "M\arL, oL,
o _hfo 0 ,0 (O _ 32
o 44\ 0L, oL, oL,  *\ar, oL,

o _Lfo 0 ,0 (0 _ 39
P _4a4\0rL, oL, “or,  M\aL, el

where 7', #2, and #* are the normal directions of each sides of the triangle.

} which is expressed in terms of the coordinates (x;, y;) of

(26)

(28)

Strain, electric field, and temperature can be discretized and interpolated using Egs. (5), (6) and (14)—
(19). Substituting these discretized expressions into Eq. (1) and Using the Hamilton’s principle, the fol-

lowing coupled discrete equations are obtained.



J. Oh, M. Cho | International Journal of Solids and Structures 41 (2004) 1357-1375 1365

to ty lo
/ / PNTN, dV{a}* + / / NN, dV{a} + / / BT[OB, + B, — kNy|dV {a}*
0 Vv 0 vV 0 14

)
- / / P, — PydS
0 N (29)

to to
/0 /VB;[eTBu —bBy + dNg|dV{a}* = /0 /SP¢ — PyydV

to ty 1
/ /BEKBodV{a}E + / /N(,T[kBu +dBy + aN,y|dV{a}* = / /P() — PydV
0 Vv 0 Vv 0 S

where B,, B,, and By are strain—displacement, electric field-potential, and heat flux-temperature transfor-
mation matrix respectively. The components of these matrices consist of the spatial derivatives of finite
element shape functions. It is omitted here for the limited space.

For the steady state response, time dependent terms are eliminated. Then the following coupled linear
equations can be obtained in element level.

/BI[QB,, +eBy — kN()]dV{a}e = /Pu — P,dS

14 N

/ Bjle'B, — bBy + dNy|dV{a}* = / Py — PydV (30)
Vv N

/BgKB(;dV{a}e :/P()*PoodV
174 S

The element matrices and vectors are defined by
K, = / BIOB,dV, K, = / BleB,dV, K= / BYkNydV, Ky, = / Bje'B,dV
v v Vv Vv

Kpp = / BTbB,dV, Ky = / BTN, dV, Ky = / BleB,dV (31)
4 4 4
P,=N,p, Py=N;q., Py=Njq

Globally assembling the Eq. (30) and imposing geometric (essential) boundary conditions, the coupled
linear equations can be solved. Nodal unknowns of displacement, electric potential, and temperature are
determined. Through the constitutive relations, stresses, electric displacement, and heat flux are computed.
Although the in-plane stresses can be predicted accurately within the capability of the present finite element,
the accurate and reliable prediction of transverse stresses requires a post-process routine.

In the post-processing, transverse shear and normal stresses are obtained by integrating 3-D local stress
equilibrium equations through the thickness of laminates. 3-D local stress is shown from Eq. (32).

Oy = — / O-xx,x + O-xyydz (323)
Oy = — / Opxx + Oy dz (32b)
0 = — / O-zx,x + Gzyde (320)

In Eq. (32), derivatives of strain and curvature are obtained by the idea of differential quadrature
method (Zhong, 2001).
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(32) (24) (16) (8)
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Fig. 4. Mesh configuration of differential quadrature for the computation of interlaminar stresses.

Partial derivative of a function with respect to a space variable at a grid point is approximated by the
weighted linear summation of function values at all grid points within the local region. The domain is
shown in Fig. 4. Thus,

D{fx.y affy T chxﬁ/pqr pqr (Pq? ) ( _l_]717]) (33)
Jj=0 =0
where Cdﬂ e are the weighting coefficients related to the function values f,, and they are given as
fpgr o 7 7
o ayJafr
(x) _ o oL, oL A pgr ) b b of,
Copp = [% % LWL b [ 2 4] hifs (34)
Ofpr
GZZ afly ft"’f;l f‘Ll afy
where fo 5 = fp(Ll)|L1:x/nz]q(L2)|L2:ﬂ/mj”(L3)|L3://m = 04p0py0y (0<p, g, 7 <m).
The auxiliary function is given as,
_ D mLy—k+1 1< <m
L) = =1 % SPS 35
e ={1] <p (39)

From Eq. (33), the derivatives of function f(x,y) at the point (x,y) can be easily computed from the
information of nodal values within local region near the point (x, y).

4. Numerical examples

To assess the performance and the validity of the developed finite element of the present study, the

deformation and stresses are obtained in the smart composite plate under doubly sinusoidally varying
mechanical, thermal, and electric inputs. The results of the present finite element are compared with the
analytical solutions (Cho and Oh, submitted for publication) based on the same model and the ANSYS
solutions based on the 8-node brick element.
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Constitutive relations are given in Egs. (2)-(4) account for full coupling between mechanical, thermal
and electric fields. Egs. (5) and (6) are used to replace the strains and the electric fields in Egs. (2) and (3) by
their expressions in terms of the displacements and electric potentials. Eq. (4) may not be used for steady-
state problems.

The response of the decoupled theory has been studied in the previous paper (Cho and Oh, 2002). The
previous study (Cho and Oh, 2002) demonstrated that the transverse normal deformation effect cannot be
neglected under thermal and electric loads. In the present numerical study, three types of decoupled/cou-
pled problems are considered. They are decoupled mechanical-electric-thermal problem, and coupled
mechanical-electric problem, and fully coupled thermo-electric-mechanical problem. In the present
numerical examples, 1/4 domain and 16 x 16 mesh configuration is used for the whole computations.

4.1. Decoupled mechanical-electricl-thermo problems

Mechanical, thermal, and electric loads are considered respectively. For the numerical evaluation of the
performance of the proposed model, rectangular plates under simply supported boundary conditions are
considered. In the mechanical loading case, transverse loading is assumed as doubly sinusoidal. In the
thermal loading case, temperature is assumed sinusoidal in the reference plane and assumed linear through
the thickness. In the electric loading case, electric field is also assumed as doubly sinusoidal in the piezo-
electric layer. The material properties of the numerical examples are given in Table 1. In the mechanical
loading case, five-layered cross-ply laminates are considered. As shown in the Fig. 5, in the thick laminate
configurations (a/h = 4), the deformations and stresses including transverse shear and normal stresses are
predicted very accurately in the present finite element analysis compared to the analytical solutions of the
present theory (Cho and Oh, 2002). The present finite element result is correlated well with that of ana-
Iytical solution. Same order of accuracy of the present theory can also be obtained by the EHOPT (efficient
higher order plate theory) with cubic zig-zag in-plane displacement field (Cho and Parmerter, 1992, 1993)
under the plane stress assumption. Transverse shear and normal stresses are obtained by integrating 3-D
local stress equilibrium equations through the thickness of laminates.

The thermal loading cases are given in Fig. 6. The finite element result of thick case (L/h = 4) with
material properties given in Table 1 is compared to the analytical solutions of present theory (Cho and Oh,
2002). The transverse shear stresses vary in the complicated zig-zag pattern through the thickness. The
present theory provides very accurate solutions for deformations and transverse stresses as well as the in-
plane stresses. The inclusion of transverse normal stress and strain effects makes the prediction of laminates
under thermal loading accurate in the present model.

In the thermo-mechanical examples, the accuracy and efficiency of the present finite element have been
demonstrated. The number of primary variables of the present model does not depend upon the number
of layers. It has only two more primary variables compared to those of the previous EHOPT because it

Table 1
Material properties used in numerical examples

Material property [0/90/0/90/0]

E; =172.37 x 10° Pa
Er = 6.895 x 10° Pa
Gr = 3.4475 x 10° Pa
Grr = 1.379 x 10° Pa
Vir = 0.25

v = 0.25

oy = 1 x 1078 /°C

oy = 1123 x 1076
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06 06
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S 00+ S 004
—e— PT_FEM
—8— PT_analytic
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0.4 4 B : ; -0.4 -
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(a) (alh)=4 Deflection (b) (a/h)=4 stress_xx
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0.2 0.0 0.2 0.4 06 08 1.0 1.2 1.0 0.8 0.6 0.4 02 0.0
(c) (alh)=4 stress_zy (d) (alh)=4 stress_zz

Fig. 5. (a) Deflection for mechanical loading, (b) in-plane stress for mechanical loading, (c) transverse shear stress for mechanical
loading, (d) transverse normal stress.

includes transverse normal deformation effect through the thickness of laminates. To avoid more com-
plexity of the displacement field, the transverse normal stress continuity conditions through the thickness
are not imposed in the present modeling.

The electric loading cases are given in Fig. 7. Model of composite laminates with surface bonded
piezoelectric actuators, subjected to externally applied electric field loads, is considered.

Figs. 5(a), 6(a), 7(a) depicts deflection for mechanical-thermo-electric loading case. In the mechanical
loading case, deflection through the thickness is almost constant. In the thermal loading case and the
electric loading case, the deflections change considerably through the thickness of plates. It is observed that
transverse normal effect is significant in the thermal and electric loading cases.

4.2. Coupled mechanical-electric problems

Simply supported square plate with [piezo(sensor)/0/90/0/piezo(actuator)] layup is considered. The
mechanical loading is doubly sinusoidal and it is applied at the top bounding surface. The material
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Fig. 6. (a) Deflection for thermal loading, (b) in-plane stress for thermal loading, (c) transverse shear stress for thermal loading.

properties for this case are given in Table 2. Applied mechanical load is 6894.7 Pa and the voltage 100 V is
applied at the piezo-actuator located at the bottom of the laminate. The 3-D elasticity solutions for
mechanical-electric coupled problems can be found in Ray et al. (1993) and Sheikh et al. (2001).

As shown in Fig. 8(a), in the thick plate (S = 4), the out-of-plane displacement has parabolic pattern
through the thickness and the prediction of the present finite element based on higher order zig-zag model
correlates very well with that of the analytical solutions. As shown in Fig. 8(b), in the moderate thick case
(S = 10), the deflection is almost uniform through the thickness. Once more, the results of finite element are
correlated very well with those of analytical solutions. Fig. 8(c) illustrates that the deflection of closed
circuit has larger value than that of open circuit. In other words, closed circuit deflection is larger because
mechanical energy in the coupled theory (open circuit) is divided into thermal energy and electrical energy.
The deflection of the coupled one is smaller than that of closed circuit. Open-circuit condition gives the
applied charge density on the surface to zero. Closed-circuit condition make an imposed potential equal to
zero. Fig. 8(d) indicates that in-plane stress of closed circuit compared with those by the open circuit. There
is no significant difference of stress distribution through the thickness. It is observed from Fig. 8(e) that
transverse shear stress using FEM analysis is agree well with analytic one of present theory.
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Fig. 7. (a) Deflection for electric loading, (b) in-plane stress for electric loading, (c) transverse shear stress for electric loading.

Table 2

Material properties of the graphite—epoxy and PZT layers

PVDF layer

Graphite-epoxy layer

E,=E,=FE;=2x10° Pa
v=0.29

€3] = e3 = 0.0046 C/m2
ez =ey =e;5=0

by = by = b33 =0.1062 x 10~° f/m

E; =172.37 x 10° Pa

E,=E; = 6.895 x 109 Pa

G]z = G13 = 3.4475 x 109 Pa

Gy = 1.379 x 10° Pa

v=0.25

by = by = by; =8.85 x 107% f/im

4.3. Coupled thermo-electric-mechanical problem

For the analysis of fully coupled case, a problem with the prescribed bounding surface heat flux is
considered. Heat flux g; = 1000 W/m? is applied on the top surface of the plate. The bottom surface is
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Fig. 8. (a) M-E deflection for electric loading, (b) M-E deflection for electric loading, (c) M-E coupled deflection for mechanical
loading, (d) M-E coupled in-plane stress for mechanical loading, (¢) M—E coupled transverse shear stress for mechanical loading.
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Table 3

Material properties of the graphite-epoxy and PZT layers

PZT layer

Graphite-epoxy layer

E, :E2:E3:63X 109 Pa

G12 = G]3 = G23 =24.6 x 109 Pa
v=0.28

o = oy = o33 = 0.9 x 10-¢ /°C
dy = dy = 150 % 1072 m/V

dy3 = —336.8 x 1072 m/V
dyy =0
dis =0

by =by = 153 x 107 fim
by3 = 15.0 x 10~ fim

d; =20 x 10-° C/m?°C

K11 = K = k33 = 2.1 W/m°C

E; = 144.23 x 10° Pa

E, =E; =9.65x 10° Pa
G = Gy = 4.14 x 10° Pa
Gy =3.45x 10° Pa
v=03

o = 1.1 x 107¢ /°C

oy = 033 = 25.2 X 107¢ /°C
K1 = 4.48 W/m°C

Ky = K33 = 3.21 W/m°C
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Fig. 9. (a) Temperature field from the heat equation, (b) temperature field through the thickness, (c) deflection according to the length
under heat flux loading, (d) deflection according to the center length under heat flux loading.
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adiabatic, i.e. g5 =0 W/m?. The layup configuration is given as [0/90/0/90/piezo(sensor)]. The material
properties for this case are given in Table 3.

The temperature profile is shown in Fig. 9(a). Through-the-thickness temperature distribution is ob-
tained by solving simultaneously coupled heat equation, mechanical equilibrium equation and electro-static
equation. It shows a smooth distribution through the thickness except the piezo-actuator layer, where the
high temperature gradient is observed. If we consider the case with severe changes of thermal property
through the thickness such as the sandwich or hybrid composite plate, the zig-zag assumed temperature
field in the present theory may strongly demonstrate its efficiency and accuracy.

To assess the validity of temperature field, the present finite element results are compare to those of the
previously reported work (Chattopadhyay et al., 1999). The example given in Chattopadhyay et al. (1999)
was adopted for the comparison purpose. The numerical model is a clamped square plate with unidirec-
tional [0] layup. Heat flux g, = 3000 W/m? is applied on the top surface. Geometric data of the example is
given as length ¢ = 0.2032 m, width » = 0.1016 m and thickness 42 = 0.01016 m.
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Fig. 10. (a) Fully coupled deflection for heat flux loading, (b) fully coupled in-plane stress for heat flux loading, (c) fully coupled
transverse shear stress for heat flux loading.
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The finite element solutions of the present theory agree very well with 3-D ANSYS solutions. However,
the temperature field of HOT proposed by Chattopadhyay et al. (1999) deviated erroneously from the
ANSYS results performed by us as shown in Fig. 9(b)—(d). Neither the results of HOT proposed by
Chattopadhyay et al. (1999) nor ANSYS results performed by Chattopadhyay et al. (1999) are based on the
fully refined meshes. They used two coarse meshes to compare the results of their model with those of
ANSYS. Both of them deviate significantly from the converged ANSYS results and also from the present
finite element solutions of zig-zag cubic model. More refined meshes are required to obtain the converged
solutions of both their model and their ANSYS results. In our simulations, to obtain converged solution,
60x20x6 mesh configuration is used for 8-node brick element of ANSYS software. The 16x16 mesh
configurations are used for the converged solution of the present finite element analysis. The temperature
distribution by the linear profile assumption through the thickness of the plates is shown in Fig. 9(b). The
result of fully refined mesh is marked as “Linear theory” and the result reported by Chattopadhyay et al.
(1999) is marked as “Linear (Chattopadhyay et al., 1999)”.

Fig. 9(c) depicts the transverse deflection along the y-axis. The prediction of the deflection by the
present finite element agrees well with the results of ANSYS. It is observed that the maximum deflection
occurs at the plate tip. Also, as shown in Fig. 9(d), deflection of midline along the y-axis is correlated very
well with that of the ANSYS solutions. Thus the present results should serve as a reference data when the
performances of prediction of thermo-electric-mechanical behaviors of newly developed models are re-
quired.

As shown in Fig. 10, in the case of thick plate (S = 4), the prediction of the out-of-plane displacement,
in-plane stress and transverse shear stress through the thickness by the present higher order zig-zag element
agrees very well to those of analytical solutions.

5. Conclusion

In the present study, a three-node triangular finite element based on cubic zig-zag plate theory has been
developed in order to analyze the behavior of the smart structure with piezo-layers.

By imposing transverse shear stress free condition of top and bottom surfaces and interface continuity
conditions between layers, layer-dependent displacement variables were eliminated. In the similar way, by
imposing top and bottom surface heat flux boundary conditions and interface heat flux continuity con-
ditions between layers, the temperature unknowns reduced to the temperature degrees of freedom of ref-
erence surface. Thus the final form of displacement and temperature fields has only reference primary
variables. Thus only layer-dependent degrees of freedom come from the electric potential degrees of
freedom. However, the formulation still keeps the efficiency since the number of the piezoelectric layers is
not so large in the practical applications.

Through the numerical examples of decoupled/coupled responses, the transverse normal deformation
effect is not negligible in the situations that electric and thermal loads are applied. The present finite element
based on the zig-zag higher order theory demonstrated its performance in predicting deformations and
interlaminar stresses because it includes the effect of transverse normal deformation. However, for the
accurate prediction of interlaminar stresses, the integration of 3-D local stress equilibrium equations is
required in the present theory as other higher order plate theories do. The idea of differential quadrature
method is utilized to calculate the higher order derivatives of primary variables in the 3-D stress equilibrium
equations. The differential quadrature works well in the triangular mesh configurations to evaluate inter-
laminar stresses. The present finite element can serve as a powerful tool to predict fully-coupled thermo-
electric-mechanical behavior of smart composite plates with embedded or attached piezo-electric sensor
and/or actuator.
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