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Abstract

A three-node triangular finite element based on cubic zig-zag plate theory is developed to refine the predictions of the

mechanical, thermal, and electric behaviors fully coupled. Both the displacement and temperature fields through the

thickness are constructed by superimposing linear zig-zag field to the smooth globally cubic varying field. Smooth

parabolic distribution through the thickness is assumed in the transverse deflection in order to consider transverse

normal deformation. Linear zig-zag form is adopted in the electric field. The layer-dependent degrees of freedom of

displacement and temperature fields are expressed in terms of reference primary degrees of freedom by applying

interface continuity conditions as well as bounding surface conditions of transverse shear stresses and transverse heat

flux. This non-conforming element passes the bending patch tests in arbitrary mesh configurations. Non-conforming C1

shape functions for the variables of out-of-plane displacement field are introduced. Nodal variables are displacements,

temperature, and elastic potentials. Through the numerical examples of coupled and uncoupled analysis, the accuracy

and efficiency of the present finite element are demonstrated. For the improvement of accuracy of interlaminar stresses,

post-processing approach of integration of equilibrium equation is used. For the computation of higher order deriv-

atives in the 3-D stress equilibrium equations, differential quadrature method is employed. The present finite element is

suitable in the predictions of fully coupled behaviors of thick smart composite plate under mechanical, thermal, and

electric loadings.
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1. Introduction

In recent years, development of integration of piezo-electric materials to composite structures is paid

special attentions due to their smart structural functionality as sensors and actuators. Thus it is important

to model and predict the behaviors of smart composite structures in the critical situations. Especially the
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full coupling effects need to be investigated in the study of smart structures in high temperature environ-

ment. Among the possible approaches, 3-dimensional and quasi-3-dimensional models are not compu-

tationally tractable. Thus many researchers are pursuing more efficient methods to accurately analyze

many-layered smart structures.
In the early stage of the development of models, classical/first order shear deformation theory has been

employed to predict mechanical behavior of embedded or surface bonded piezo-electric layers (Crawley,

1987; Lee, 1990). The finite elements based on the smart classical/first order plate theories have been

developed for the application to general shape and loading conditions (Ha et al., 1992).

However, for the accurate prediction of static and dynamic behavior for general layup configurations of

smart laminated structures, classical and first order shear theories are not adequate. Thus higher order

theories with smeared displacements and layerwise electric potential fields (Mitchell and Reddy, 1995;

Franco Correia et al., 2000) and full layerwise theories and corresponding finite element have been
developed by Saravanos et al. (1997). The smeared theory is not sufficient to describe the deformation

behavior through the thickness because it cannot satisfy static continuity conditions at the interfaces be-

tween layers. Layerwise theory can adequately describe the deformation behavior through the thickness but

it is not computationally efficient because it employs a large number of degrees of freedom which depend

upon the number of layers (Reddy and Robbins, 1994).

In thermo-mechanical problem, even in moderate thick plate configurations, the transverse normal

deformation effect cannot be neglected since the effect of out-of-plane thermal deformation is equally

important compared to those of the in-plane thermal deformations (Ali et al., 1999). In addition, for the
reliable analysis of adaptive composite laminates under thermal environments, full coupling effects between

thermal-mechanical-electricity should be considered. Chattopadhyay et al. (1999) used a finite element

model based on the smeared cubic higher order theory to analyze the smart structures with the full coupling

of thermo-mechanical-electricity. However, smeared theories are not adequate in the prediction of defor-

mation behavior and layerwise models and 3-D solid models are computationally too expensive. Thus it is

still required to develop accurate and efficient model and corresponding finite element that can predict the

static and dynamic behaviors of smart structures under thermo-electric-mechanical coupled situations.

In the present study, we aim at developing a plate bending element which is based on higher order zig-
zag theory (Cho and Oh, 2001, submitted for publication) for the prediction of fully coupled behavior of

smart composite plates under the thermo-electric-mechanical environments. To predict reliable deforma-

tion behaviors, transverse normal as well as transverse shear deformations are considered. For the efficient

evaluation of the mechanical behaviors, transverse shear stress balance conditions are pre-imposed in the

displacement field to reduce total active degrees of freedom. The temperature field is also obtained by

superimposing linear zig-zag field into the global smeared cubic field. The layer-dependent temperature

degrees of freedom are suppressed by imposing top and bottom surface heat flux conditions as well as

interface transverse heat flux continuity conditions. The formulation includes full coupling between
thermo-mechanical-electric behaviors. Even though the developed theory is a two-dimensional plate ver-

sion, full three-dimensional constitutive equations are used for the accurate prediction of the deformation

under thermal and electric loads combined.

The developed finite element does not have layer-dependent degrees of freedom of displacement field and

temperature field but it has layer-dependent degrees of freedom for electric potentials in order to describe

arbitrary distributions of electric potential through the thickness of smart structures.
2. Zig-zag model review

The free energy density function may be written as follows and can be found in Chattopadhyay et al.
(1999):
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F ðeij;Ei; hÞ ¼
1

2
Cijkleijekl � eijkEiejk �

1

2
bijEiEj � kijheij � diEih � 1

2
aTh

2 ð1Þ
where the quantities Cijkl, eijk, and CE are the elastic constants, the piezoelectric constants, and the heat

capacity respectively, and aT is defined as CE=T0.
The constitutive equations for fully coupled thermo-mechanical-electric materials are given as
rij ¼
oF
oeij

¼ Cijklekl � eijkEk � kijh ð2Þ

Di ¼ � oF
oEi

¼ eijkejk þ bijEj þ dih ð3Þ

S ¼ � oF
oh

¼ kijeij þ diEi þ aTh ð4Þ
where rij and Di are the components of the stress tensor and electric displacement vector. S denotes en-

tropy. h ¼ T � T0 is the temperature rise from the initial temperature T0. Ei is the components of the electric

field vector. bij is the dielectric permittivity and kij and di refer to the thermal-mechanical and the thermal-

piezoelectric coupling constants.

In the case of considering partial coupling, the constitutive equation given in Eq. (2) is used only for the
analysis. Based on linear piezoelectricity, Ei can be expressed from a scalar potential function / as follows:
Ei ¼ �/;i ði ¼ 1; 2; 3Þ ð5Þ
Infinitesimal displacement and strain relationship is used and it is given as
eij ¼
1

2
ðui;j þ uj;iÞ ð6Þ
The configuration of the smart laminated composite plate is shown in Fig. 1.

For efficient modeling without losing the accuracy in the present study, a fully coupled higher-order zig-

zag theory is proposed. A zig-zag higher order in-plane displacement field is obtained by superimposing zig-
zag linear field to the globally cubic varying field. In order to include the transverse normal effect which is

significant in thermo-mechanical problems, the out-of-plane displacement field is assumed as globally

parabolic form through the thickness.
a
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Fig. 1. Configuration of the adaptive laminated composite plates.
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The starting displacement field can be written as follows:
uaðxb; zÞ ¼ uoaðxbÞ þ waðxbÞzþ naðxbÞz2 þ uaðxbÞz3 þ
XN�1

k¼1

SkaðxbÞðz� zkÞHðz� zkÞ

u3ðxa; zÞ ¼ wðxaÞ þ r1ðxaÞzþ r2ðxaÞz2
ð7Þ
where Hðz� zkÞ is a Heaviside unit step function.

By applying top and bottom surface transverse shear free conditions, and applying transverse shear

stress continuity conditions at the interface between layers, the final displacement field reduces to the

following form.
uaðxb; z; tÞ ¼ uoaðxb; tÞ � w;aðxb; tÞz�
1

2h
3uah

2

(
þ
XN�1

k¼1

akacuc

�
þ bkacr2;c

�
þ r1;aðxb; tÞhþ r2;aðxb; tÞh2

)
z2

þ uaðxb; tÞz3 þ
XN�1

k¼1

akacuc

�
þ bkacr2;c

�
ðz� zkÞHðz� zkÞ

u3ðxa; z; tÞ ¼ wðxa; tÞ þ r1ðxa; tÞzþ r2ðxa; tÞz2

ð8Þ
The detailed derivation can be found in Cho and Oh (2001, 2002).
The variables in the final displacement field are defined only at the reference plane. The primary variables

are u0a, w, ua, r1, r2. Thus the number of the primary variables does not depend upon the number of layers.

Similar to the displacement field construction, the temperature field through the thickness of the plate is

obtained by superimposing linear zig-zag field onto the global cubic smooth field. The starting temperature

field can be written as follows:
hðxb; z; tÞ ¼ h0ðxb; tÞ þ h1ðxb; tÞzþ h2ðxb; tÞz2 þ h3ðxb; tÞz3 þ
XN�1

k¼1

hskðxb; tÞðz� zkÞHðz� zkÞ ð9Þ
In general, the plate may be subjected to either thermal loads or prescribed temperature at both top and

bottom surfaces. Four different set of bounding surface conditions may be considered and they were given

in Cho and Oh (submitted for publication). In the present study, we focus on the case of thermal heat flux

applied on the bounding surfaces. Thus the two thermal boundary conditions on both surfaces are ex-

pressed as
�j1
33h;Z ¼ qt at z ¼ 0

�jN33h;Z ¼ qb at z ¼ h

�
ð10Þ
By applying the heat flux conditions on top and bottom surfaces and applying transverse heat flux

continuity condition at each interface between layers, the expression for the temperature field can be written

as follows:
h ¼ h0 �
qt
j1
33

z� 1

2h
qb
jN33

(
� qt

j1
33

þ 3h3h2 þ
XN�1

k¼1

ðCkh3 þ dkÞ
)
z2 þ h3z3

þ
XN�1

k¼1

ðCkh3 þ dkÞðz� zkÞHðz� zkÞ ð11Þ
where qt and qb indicate the heat flux applied on top and bottom surfaces, respectively. ji33 denotes the

thermal conductivity in the thickness direction in the ith layer. It must be noted that the higher order
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temperature field defines a non-uniform zig-zag temperature distribution through the thickness of plates.

The functions h0ðxbÞ and h3ðxbÞ define the in-plane temperature variations. The detailed expressions for the

coefficients of Eq. (11) can be found in Cho and Oh (2001, submitted for publication). It is important to

note that although a linear temperature field can address the in-plane temperature distribution, it cannot
satisfy the surface thermal boundary conditions nor the heat flux continuity conditions at the interfaces

between layers. Therefore, temperature variations through the thickness, which produce the most impor-

tant bending deformation, cannot be modeled accurately by the linear temperature field nor smooth cubic

field. The present temperature field given in Eq. (11) can describe accurate and simple distribution through

the thickness and the pattern is consistent with the displacement field given in Eq. (8). It should be

emphasized that if the adjacent layers have severe changes of thermal material properties like sandwich

plates or hybrid composite plates, the temperature field given in Eq. (11) can predict accurate but signifi-

cantly different results from those of smeared temperature fields.
The expressions for the potential function can be written as follows:
/ ¼
XN
k¼1

/ðkÞ
0

n
þ /ðkÞ

1 ðz� zk�1Þ
o
fHðz� zk�1Þ � Hðz� zkÞg ð12Þ
The descriptions of the electric potential / are expressed as layer-dependent form using linear zig-zag

field through the thickness. Two degrees of freedom are required to express electric potential / in each

layer. Even though the layer-dependent potential field is assumed through the thickness, the number of
piezo-layers is relatively small compared to the total number of layers. Thus this layer-dependent electric

potential field does not increase the number of degrees of freedom significantly. Variational functional

based on Eqs. (8), (11) and (12) can be constructed for general materials with fully coupled constitutive

relations given in Eqs. (2)–(4). The equilibrium equations and boundary conditions can be derived from the

Hamilton principle. The fully coupled governing equations for the proposed deformation, temperature, and

electric field can be derived in a straightforward way and it was derived in Cho and Oh (submitted for

publication).
3. Formulation of a non-conforming finite element method

The laminated plate theory which we have developed has second derivatives of w (transverse deflection at

the reference plane) and r1 and r2 in the expression of strain energy. Thus C1 (slope-continuous) functions

should be used. However, it is well known in plate theory that it is difficult to impose C1 conditions at the

interfaces between elements (in x–y plane) in an arbitrary mesh configuration. In the present study, a tri-

angular plate bending element is developed for its simplicity and expediency in modeling arbitrary
boundary shapes. The thin plate non-conforming triangular element developed by Specht (1988) satisfies C1

condition at the nodes, but not along element boundaries. This element is the starting point for our

development.

In the finite element formulation, the coordinates x and y indicates x1 and x2, respectively. For the

present three-noded triangular element, the nodal displacement vector fage is fuoxi; uoyi;uxi;uyi;wi; hxi; hyi; r1i;
R1xi;R1yi; r2i;R2xi;R2yi;/0;/1; h0; h3g where hx ¼ w;y and hy ¼ �w;x and R1x ¼ r1;y and R1y ¼ �r1;x and

R2x ¼ r2;y and R2y ¼ �r2;x. Area coordinates L1, L2, and L3 are used as interpolation functions. The detailed

geometry and the coordinates for the triangular element is shown in Fig. 2.
The global coordinates are expressed as follows:
x ¼
X3
i¼1

Lixi; y ¼
X3
i¼1

Liyi ð13Þ
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Fig. 2. Geometry and coordinates for the triangular element.
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Isoparametric mapping is used for displacement unknowns uox , u
o
y , uox , uoy , /0, /1, h0, and h3. Subpara-

metric mapping is used for w, r1, and r2. The primary displacement unknowns are expressed in terms of

nodal variables and shape functions as follows:
uox ¼
X3
i¼1

Liuoxi; uoy ¼
X3
i¼1

Liuoyi ð14Þ

uo
x ¼
X3
i¼1

Liuo
xi; uoy ¼

X3
i¼1

Liuo
yi ð15Þ

w ¼
X3
i¼1

fwiNi þ hxiNxi þ hyiNyig ð16Þ

r1 ¼
X3
i¼1

fr1iNi þ R1xiNxi þ R1yiNyig; r2 ¼
X3
i¼1

fr2iNi þ R2xiNxi þ R2yiNyig ð17Þ

/0 ¼
X3
i¼1

Li/0i; /1 ¼
X3
i¼1

Li/1i ð18Þ

h0 ¼
X3
i¼1

Lih0i; h3 ¼
X3
i¼1

Lih3i ð19Þ
where the detailed expressions for Ni, Nxi, Nyi are taken from Specht (1988). The terms of the basis of shape
functions in the area coordinate system are reproduced here, with corrections of errors made in Specht

(1988). It can also be found in Cho and Parmerter (1994).
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Ni ¼ n3i�2; Nxi ¼ n3i�1; Ni ¼ n3i ð20Þ
where i ¼ 1, 2, and 3.

The shape functions can be written in the form
na ¼
X9
r¼1

Z�1
ar zr ð21Þ
where a ¼ 1; . . . ; 9
½zr	 ¼ L1; L2; L3; L1L2; L2L3; L3L1; L21L2

	
þ 1

2
L1L2L3f3ð1� l3ÞL1 � ð1þ 3l3ÞL2 þ ð1þ 3l3ÞL3g;

L22L3 þ
1

2
L1L2L3f3ð1� l1ÞL2 � ð1þ 3l1ÞL3 þ ð1þ 3l1ÞL1g;

L23L1 þ
1

2
L1L2L3f3ð1� l2ÞL3 � ð1þ 3l2ÞL1 þ ð1þ 3l2ÞL2g



ð22Þ
The constants are
l1 ¼
l23 � l22
l21

; l2 ¼
l21 � l23
l22

; l3 ¼
l22 � l21
l23

ð23Þ
where l1, l2, and l3 are the lengths of the side of the triangle.

The determination of z7, z8, and z9 is based on the following consideration. From the boundary con-

ditions in equation, the energy associated with interelement jumps can be written
DUC ¼
Z

Cs

MnnD
ow
on

� 

dC þ

Z
Cs

MnsD
ow
os

� 

dC ð24Þ
Physically, there should be no energy associated with these interelement discontinuities; so we set both

terms of Eq. (24) to zero (see Fig. 3). Since wðsÞ is uniquely determined from the two node data, Dw;s is
equal to zero.

For a constant state of bending moments, the following condition should be required to pass the bending

patch test.
Mnn

Z
Cs

D
ow
on

� 

dC ¼ 0 ð25Þ
Thus the quartic polynomials z7, z8, and z9 are determined to satisfy Eq. (25).

The transformation matrix Zar is regular for an arbitrary geometry of the triangle. The shape function na
can now be set up by Eq. (21) using the inverse transformation matrix.
Z�1
ar ¼

1 0 0 �1 0 1 2 0 �2
0 0 0 0 0 a12 �a13 0 �a12
0 0 0 0 0 a22 �a23 0 �a22
0 1 0 1 �1 0 �2 2 0

0 0 0 a13 0 0 �a13 �a11 0

0 0 0 a23 0 0 �a23 �a21 0

0 0 1 0 1 �1 0 �2 2

0 0 0 0 a11 0 0 �a11 �a12
0 0 0 0 a21 0 0 �a21 �a22

2
6666666666664

3
7777777777775



Fig. 3. Element interface slope discontinuity.
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where ½aij	 ¼ 2A oLj
oxi

h i
¼ y2 � y3 y3 � y1 y1 � y2

x3 � x2 x1 � x3 x2 � x1

	 

which is expressed in terms of the coordinates ðxi; yiÞ of

the corner nodes.

In the calculation of the normal derivatives,
o

og1
¼ l1

4A
o

oL2

�
þ o

oL3
� 2

o

oL1
þ l1

o

oL3

�
� o

oL2


�
ð26Þ
o

og2
¼ l2

4A
o

oL3

�
þ o

oL1
� 2

o

oL2
þ l2

o

oL1

�
� o

oL3


�
ð27Þ
o

og3
¼ l3

4A
o

oL1

�
þ o

oL2
� 2

o

oL3
þ l3

o

oL2

�
� o

oL1


�
ð28Þ
where g1, g2, and g3 are the normal directions of each sides of the triangle.

Strain, electric field, and temperature can be discretized and interpolated using Eqs. (5), (6) and (14)–
(19). Substituting these discretized expressions into Eq. (1) and Using the Hamilton�s principle, the fol-

lowing coupled discrete equations are obtained.
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Z t0

0

Z
V

qNT
u Nu dV f€ag

e þ
Z t0

0

Z
V

cNT
u Nu dV f _ag

e þ
Z t0

0

Z
V
BT
u ½QBu þ eB/ � kNh	dV fage

¼
Z t0

0

Z
S
Pu � Puh dSZ t0

0

Z
V
BT

/½eTBu � bB/ þ dNh	dV fage ¼
Z t0

0

Z
S
P/ � P/h dVZ t0

0

Z
V
BT

h jBh dV fage þ
Z t0

0

Z
V
NT

h ½kBu þ dB/ þ aNh	dV f _age ¼
Z t0

0

Z
S
Ph � Phh dV

ð29Þ
where Bu, B/, and Bh are strain–displacement, electric field-potential, and heat flux-temperature transfor-

mation matrix respectively. The components of these matrices consist of the spatial derivatives of finite

element shape functions. It is omitted here for the limited space.

For the steady state response, time dependent terms are eliminated. Then the following coupled linear
equations can be obtained in element level.
Z

V
BT
u ½QBu þ eB/ � kNh	dV fage ¼

Z
S
Pu � Puh dSZ

V
BT

/½eTBu � bB/ þ dNh	dV fage ¼
Z
S
P/ � P/h dVZ

V
BT

h jBh dV fage ¼
Z
S
Ph � Phh dV

ð30Þ
The element matrices and vectors are defined by
Kuu ¼
Z
V
BT
u QBu dV ; Ku/ ¼

Z
V
BT
u eB/ dV ; Kuh ¼

Z
V
BT
u kNh dV ; K/u ¼

Z
V
BT

/e
TBu dV

K// ¼
Z
V
BT

/bB/ dV ; K/h ¼
Z
V
BT

/dNh dV ; Khh ¼
Z
V
BT

h e
TBh dV

Pu ¼ NT
u p; P/ ¼ NT

/ qe; Ph ¼ NT
h qt

ð31Þ
Globally assembling the Eq. (30) and imposing geometric (essential) boundary conditions, the coupled

linear equations can be solved. Nodal unknowns of displacement, electric potential, and temperature are

determined. Through the constitutive relations, stresses, electric displacement, and heat flux are computed.

Although the in-plane stresses can be predicted accurately within the capability of the present finite element,
the accurate and reliable prediction of transverse stresses requires a post-process routine.

In the post-processing, transverse shear and normal stresses are obtained by integrating 3-D local stress

equilibrium equations through the thickness of laminates. 3-D local stress is shown from Eq. (32).
rxz ¼ �
Z

rxx;x þ rxy;y dz ð32aÞ
ryz ¼ �
Z

ryx;x þ ryy;y dz ð32bÞ
rzz ¼ �
Z

rzx;x þ rzy;y dz ð32cÞ
In Eq. (32), derivatives of strain and curvature are obtained by the idea of differential quadrature

method (Zhong, 2001).



Fig. 4. Mesh configuration of differential quadrature for the computation of interlaminar stresses.
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Partial derivative of a function with respect to a space variable at a grid point is approximated by the

weighted linear summation of function values at all grid points within the local region. The domain is
shown in Fig. 4. Thus,
Dnff ðx; yÞgabc ¼
Xm
j¼0

Xm�j
i¼0

CðnÞ
abc;pqrfpqr ðp; q; rÞ ¼ ðm� i� j; i; jÞ ð33Þ
where CðnÞ
abc;pqr are the weighting coefficients related to the function values fpqr and they are given as
CðxÞ
abc;pqr ¼ oL1

ox
oL2
ox

oL3
ox

� � ofpqr
oL1
ofpqr
oL2
ofpqr
oL3

8><
>:

9>=
>;

abc

¼ b1
2D

b2
2D

b3
2D

� � o�fp
oL1

�fq�fr
�fp

o�fq
oL1

�fr
�fp�fq

o�fr
oL1

8>><
>>:

9>>=
>>;

abc

ð34Þ
where fpqrjabc ¼ �fpðL1ÞjL1¼a=m
�fqðL2ÞjL2¼b=m

�frðL3ÞjL3¼c=m ¼ dapdbqdcr ð06 p; q; r6mÞ:
The auxiliary function is given as,
�fpðL1Þ ¼
Qp

k¼1
mL1�kþ1

k ; 16 p6m
1; p ¼ 0

�
ð35Þ
From Eq. (33), the derivatives of function f ðx; yÞ at the point ðx; yÞ can be easily computed from the

information of nodal values within local region near the point ðx; yÞ.
4. Numerical examples

To assess the performance and the validity of the developed finite element of the present study, the

deformation and stresses are obtained in the smart composite plate under doubly sinusoidally varying

mechanical, thermal, and electric inputs. The results of the present finite element are compared with the

analytical solutions (Cho and Oh, submitted for publication) based on the same model and the ANSYS
solutions based on the 8-node brick element.
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Constitutive relations are given in Eqs. (2)–(4) account for full coupling between mechanical, thermal

and electric fields. Eqs. (5) and (6) are used to replace the strains and the electric fields in Eqs. (2) and (3) by

their expressions in terms of the displacements and electric potentials. Eq. (4) may not be used for steady-

state problems.
The response of the decoupled theory has been studied in the previous paper (Cho and Oh, 2002). The

previous study (Cho and Oh, 2002) demonstrated that the transverse normal deformation effect cannot be

neglected under thermal and electric loads. In the present numerical study, three types of decoupled/cou-

pled problems are considered. They are decoupled mechanical-electric-thermal problem, and coupled

mechanical-electric problem, and fully coupled thermo-electric-mechanical problem. In the present

numerical examples, 1/4 domain and 16 · 16 mesh configuration is used for the whole computations.
4.1. Decoupled mechanical-electric1-thermo problems

Mechanical, thermal, and electric loads are considered respectively. For the numerical evaluation of the
performance of the proposed model, rectangular plates under simply supported boundary conditions are

considered. In the mechanical loading case, transverse loading is assumed as doubly sinusoidal. In the

thermal loading case, temperature is assumed sinusoidal in the reference plane and assumed linear through

the thickness. In the electric loading case, electric field is also assumed as doubly sinusoidal in the piezo-

electric layer. The material properties of the numerical examples are given in Table 1. In the mechanical

loading case, five-layered cross-ply laminates are considered. As shown in the Fig. 5, in the thick laminate

configurations (a=h ¼ 4), the deformations and stresses including transverse shear and normal stresses are

predicted very accurately in the present finite element analysis compared to the analytical solutions of the
present theory (Cho and Oh, 2002). The present finite element result is correlated well with that of ana-

lytical solution. Same order of accuracy of the present theory can also be obtained by the EHOPT (efficient

higher order plate theory) with cubic zig-zag in-plane displacement field (Cho and Parmerter, 1992, 1993)

under the plane stress assumption. Transverse shear and normal stresses are obtained by integrating 3-D

local stress equilibrium equations through the thickness of laminates.

The thermal loading cases are given in Fig. 6. The finite element result of thick case (L=h ¼ 4) with

material properties given in Table 1 is compared to the analytical solutions of present theory (Cho and Oh,

2002). The transverse shear stresses vary in the complicated zig-zag pattern through the thickness. The
present theory provides very accurate solutions for deformations and transverse stresses as well as the in-

plane stresses. The inclusion of transverse normal stress and strain effects makes the prediction of laminates

under thermal loading accurate in the present model.

In the thermo-mechanical examples, the accuracy and efficiency of the present finite element have been

demonstrated. The number of primary variables of the present model does not depend upon the number

of layers. It has only two more primary variables compared to those of the previous EHOPT because it
Table 1

Material properties used in numerical examples

Material property [0/90/0/90/0]

EL ¼ 172:37� 109 Pa

ET ¼ 6:895� 109 Pa

GLT ¼ 3:4475� 109 Pa

GTT ¼ 1:379� 109 Pa

mLT ¼ 0:25

mTT ¼ 0:25

aLL ¼ 1� 10�8 /�C
aTT ¼ 1123� 10�6
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Fig. 5. (a) Deflection for mechanical loading, (b) in-plane stress for mechanical loading, (c) transverse shear stress for mechanical

loading, (d) transverse normal stress.
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includes transverse normal deformation effect through the thickness of laminates. To avoid more com-

plexity of the displacement field, the transverse normal stress continuity conditions through the thickness

are not imposed in the present modeling.

The electric loading cases are given in Fig. 7. Model of composite laminates with surface bonded

piezoelectric actuators, subjected to externally applied electric field loads, is considered.
Figs. 5(a), 6(a), 7(a) depicts deflection for mechanical-thermo-electric loading case. In the mechanical

loading case, deflection through the thickness is almost constant. In the thermal loading case and the

electric loading case, the deflections change considerably through the thickness of plates. It is observed that

transverse normal effect is significant in the thermal and electric loading cases.
4.2. Coupled mechanical-electric problems

Simply supported square plate with [piezo(sensor)/0/90/0/piezo(actuator)] layup is considered. The
mechanical loading is doubly sinusoidal and it is applied at the top bounding surface. The material
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Fig. 6. (a) Deflection for thermal loading, (b) in-plane stress for thermal loading, (c) transverse shear stress for thermal loading.
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properties for this case are given in Table 2. Applied mechanical load is 6894.7 Pa and the voltage 100 V is

applied at the piezo-actuator located at the bottom of the laminate. The 3-D elasticity solutions for

mechanical-electric coupled problems can be found in Ray et al. (1993) and Sheikh et al. (2001).

As shown in Fig. 8(a), in the thick plate (S ¼ 4), the out-of-plane displacement has parabolic pattern

through the thickness and the prediction of the present finite element based on higher order zig-zag model
correlates very well with that of the analytical solutions. As shown in Fig. 8(b), in the moderate thick case

(S ¼ 10), the deflection is almost uniform through the thickness. Once more, the results of finite element are

correlated very well with those of analytical solutions. Fig. 8(c) illustrates that the deflection of closed

circuit has larger value than that of open circuit. In other words, closed circuit deflection is larger because

mechanical energy in the coupled theory (open circuit) is divided into thermal energy and electrical energy.

The deflection of the coupled one is smaller than that of closed circuit. Open-circuit condition gives the

applied charge density on the surface to zero. Closed-circuit condition make an imposed potential equal to

zero. Fig. 8(d) indicates that in-plane stress of closed circuit compared with those by the open circuit. There
is no significant difference of stress distribution through the thickness. It is observed from Fig. 8(e) that

transverse shear stress using FEM analysis is agree well with analytic one of present theory.
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Fig. 7. (a) Deflection for electric loading, (b) in-plane stress for electric loading, (c) transverse shear stress for electric loading.

Table 2

Material properties of the graphite–epoxy and PZT layers

PVDF layer Graphite–epoxy layer

E1 ¼ E2 ¼ E3 ¼ 2� 109 Pa E1 ¼ 172:37� 109 Pa

m ¼ 0:29 E2 ¼ E3 ¼ 6:895� 109 Pa

e31 ¼ e32 ¼ 0:0046 C/m2 G12 ¼ G13 ¼ 3:4475� 109 Pa

e33 ¼ e24 ¼ e15 ¼ 0 G23 ¼ 1:379� 109 Pa

b11 ¼ b22 ¼ b33 ¼ 0:1062� 10�9 f/m m ¼ 0:25

b11 ¼ b22 ¼ b33 ¼ 8:85� 10�3 f/m
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4.3. Coupled thermo-electric-mechanical problem

For the analysis of fully coupled case, a problem with the prescribed bounding surface heat flux is

considered. Heat flux qt ¼ 1000 W/m2 is applied on the top surface of the plate. The bottom surface is
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Fig. 8. (a) M–E deflection for electric loading, (b) M–E deflection for electric loading, (c) M–E coupled deflection for mechanical

loading, (d) M–E coupled in-plane stress for mechanical loading, (e) M–E coupled transverse shear stress for mechanical loading.
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Table 3

Material properties of the graphite-epoxy and PZT layers

PZT layer Graphite–epoxy layer

E1 ¼ E2 ¼ E3 ¼ 63� 109 Pa E1 ¼ 144:23� 109 Pa

G12 ¼ G13 ¼ G23 ¼ 24:6� 109 Pa E2 ¼ E3 ¼ 9:65� 109 Pa

m ¼ 0:28 G12 ¼ G13 ¼ 4:14� 109 Pa

a11 ¼ a22 ¼ a33 ¼ 0:9� 10�6 /�C G23 ¼ 3:45� 109 Pa

d31 ¼ d32 ¼ 150� 10�12 m/V m ¼ 0:3

d33 ¼ �336:8� 10�12 m/V a11 ¼ 1:1� 10�6 /�C
d24 ¼ 0 a22 ¼ a33 ¼ 25:2� 10�6 /�C
d15 ¼ 0 j11 ¼ 4:48 W/m �C
b11 ¼ b22 ¼ 15:3� 10�9 f/m j22 ¼ j33 ¼ 3:21 W/m �C
b33 ¼ 15:0� 10�9 f/m

d3 ¼ 20� 10�6 C/m2 �C
j11 ¼ j22 ¼ j33 ¼ 2:1 W/m �C
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Fig. 9. (a) Temperature field from the heat equation, (b) temperature field through the thickness, (c) deflection according to the length

under heat flux loading, (d) deflection according to the center length under heat flux loading.

1372 J. Oh, M. Cho / International Journal of Solids and Structures 41 (2004) 1357–1375



J. Oh, M. Cho / International Journal of Solids and Structures 41 (2004) 1357–1375 1373
adiabatic, i.e. qb ¼ 0 W/m2. The layup configuration is given as [0/90/0/90/piezo(sensor)]. The material

properties for this case are given in Table 3.

The temperature profile is shown in Fig. 9(a). Through-the-thickness temperature distribution is ob-

tained by solving simultaneously coupled heat equation, mechanical equilibrium equation and electro-static
equation. It shows a smooth distribution through the thickness except the piezo-actuator layer, where the

high temperature gradient is observed. If we consider the case with severe changes of thermal property

through the thickness such as the sandwich or hybrid composite plate, the zig-zag assumed temperature

field in the present theory may strongly demonstrate its efficiency and accuracy.

To assess the validity of temperature field, the present finite element results are compare to those of the

previously reported work (Chattopadhyay et al., 1999). The example given in Chattopadhyay et al. (1999)

was adopted for the comparison purpose. The numerical model is a clamped square plate with unidirec-

tional [0] layup. Heat flux qt ¼ 3000 W/m2 is applied on the top surface. Geometric data of the example is
given as length a ¼ 0:2032 m, width b ¼ 0:1016 m and thickness h ¼ 0:01016 m.
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Fig. 10. (a) Fully coupled deflection for heat flux loading, (b) fully coupled in-plane stress for heat flux loading, (c) fully coupled

transverse shear stress for heat flux loading.
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The finite element solutions of the present theory agree very well with 3-D ANSYS solutions. However,

the temperature field of HOT proposed by Chattopadhyay et al. (1999) deviated erroneously from the

ANSYS results performed by us as shown in Fig. 9(b)–(d). Neither the results of HOT proposed by

Chattopadhyay et al. (1999) nor ANSYS results performed by Chattopadhyay et al. (1999) are based on the
fully refined meshes. They used two coarse meshes to compare the results of their model with those of

ANSYS. Both of them deviate significantly from the converged ANSYS results and also from the present

finite element solutions of zig-zag cubic model. More refined meshes are required to obtain the converged

solutions of both their model and their ANSYS results. In our simulations, to obtain converged solution,

60 · 20 · 6 mesh configuration is used for 8-node brick element of ANSYS software. The 16 · 16 mesh

configurations are used for the converged solution of the present finite element analysis. The temperature

distribution by the linear profile assumption through the thickness of the plates is shown in Fig. 9(b). The

result of fully refined mesh is marked as ‘‘Linear theory’’ and the result reported by Chattopadhyay et al.
(1999) is marked as ‘‘Linear (Chattopadhyay et al., 1999)’’.

Fig. 9(c) depicts the transverse deflection along the y-axis. The prediction of the deflection by the

present finite element agrees well with the results of ANSYS. It is observed that the maximum deflection

occurs at the plate tip. Also, as shown in Fig. 9(d), deflection of midline along the y-axis is correlated very

well with that of the ANSYS solutions. Thus the present results should serve as a reference data when the

performances of prediction of thermo-electric-mechanical behaviors of newly developed models are re-

quired.

As shown in Fig. 10, in the case of thick plate (S ¼ 4), the prediction of the out-of-plane displacement,
in-plane stress and transverse shear stress through the thickness by the present higher order zig-zag element

agrees very well to those of analytical solutions.
5. Conclusion

In the present study, a three-node triangular finite element based on cubic zig-zag plate theory has been

developed in order to analyze the behavior of the smart structure with piezo-layers.

By imposing transverse shear stress free condition of top and bottom surfaces and interface continuity

conditions between layers, layer-dependent displacement variables were eliminated. In the similar way, by
imposing top and bottom surface heat flux boundary conditions and interface heat flux continuity con-

ditions between layers, the temperature unknowns reduced to the temperature degrees of freedom of ref-

erence surface. Thus the final form of displacement and temperature fields has only reference primary

variables. Thus only layer-dependent degrees of freedom come from the electric potential degrees of

freedom. However, the formulation still keeps the efficiency since the number of the piezoelectric layers is

not so large in the practical applications.

Through the numerical examples of decoupled/coupled responses, the transverse normal deformation

effect is not negligible in the situations that electric and thermal loads are applied. The present finite element
based on the zig-zag higher order theory demonstrated its performance in predicting deformations and

interlaminar stresses because it includes the effect of transverse normal deformation. However, for the

accurate prediction of interlaminar stresses, the integration of 3-D local stress equilibrium equations is

required in the present theory as other higher order plate theories do. The idea of differential quadrature

method is utilized to calculate the higher order derivatives of primary variables in the 3-D stress equilibrium

equations. The differential quadrature works well in the triangular mesh configurations to evaluate inter-

laminar stresses. The present finite element can serve as a powerful tool to predict fully-coupled thermo-

electric-mechanical behavior of smart composite plates with embedded or attached piezo-electric sensor
and/or actuator.
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